The Atomic Decomposition of Besov-Bergman-Lipschitz Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Univalent Interpolation in Besov Spaces and Superposition into Bergman Spaces

We characterize the superposition operators from an analytic Besov space or the little Bloch space into a Bergman space in terms of the order and type of the symbol. We also determine when these operators are continuous or bounded. Along the way, we prove new non-centered Trudinger-Moser inequalities and solve the problem of interpolation by univalent functions in analytic Besov spaces. Introdu...

متن کامل

Decomposition of Besov-Morrey Spaces

We establish a decomposition of Besov-Morrey spaces in terms of smooth “wavelets” obtained from a Littlewood-Paley partition of unity, or more generally molecules concentrated on dyadic cubes. We show that an expansion in atoms supported on dyadic cubes holds. We study atoms in Morrey spaces and prove a Littlewood-Paley theorem. Our results extend those of M. Frazier and B. Jawerth for Besov sp...

متن کامل

Lipschitz Type Characterizations for Bergman Spaces

We obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.

متن کامل

On an atomic decomposition in Banach spaces

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

متن کامل

An Integral Representation for Besov and Lipschitz Spaces

It is well known that functions in the analytic Besov space B1 on the unit disk D admits an integral representation f(z) = ∫ D z − w 1− zw dμ(w), where μ is a complex Borel measure with |μ|(D) < ∞. We generalize this result to all Besov spaces Bp with 0 < p ≤ 1 and all Lipschitz spaces Λt with t > 1. We also obtain a version for Bergman and Fock spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1985

ISSN: 0002-9939

DOI: 10.2307/2044886